Steam Quality Meter Technology Review

1.) Theory of Operation – Installed System configuration

2.) Installed Steam Meter Designs – Generation 2 – Typical Performance 28/64 Choke

3.) Operations Issues/Solutions – Routine Scale handling, Plugging Solutions (by Exception)

4.) Flow Control & Automation – Control Metric & Methods
Critical Flow Choke Equation for Wet Steam. Many steam injection wells for shallow EOR reservoirs use a critical flow choke to control injection flow rate. The advantage of using a choke or other critical flow device is that the flow rate will remain constant regardless of the change in the pressure downstream of the choke. There are a number of equations that describe the critical flow rate of steam \(^3\). The form of the flow equation adopted in this work is one proposed by Napier and modified by King and Crocker\(^4\),

\[
 w = a \frac{d_c^2 \frac{p}{X}}{k} . \quad \quad \quad (1)
\]

where \(w \) is the steam flow rate, \(d_c \) is the diameter of the critical flow meter, \(p \) is the pressure, and \(X \) is the steam quality. The value of \(a \) and \(b \) in Eq.1 are to be determined from experimental data to calibrate for a particular critical flow device, flow regime and pressure range.

Orifice Flow Equation for Wet Steam. The orifice flow equation is an adaptation of the general orifice flow equation, i.e.,

\[
 w = 1888.56 C_o F_o Y_2 \frac{d_o^2}{1-\beta^4} \sqrt{\frac{p}{v_{exp}}} \quad \quad (2)
\]

where \(d_o \) is the orifice diameter, \(\beta \) is the ratio of orifice diameter/pipe diameter, \(\phi \) is the orifice pressure drop, \(v_{exp} \) is the two-phase specific volume of the steam as it flows through the orifice, and \(C_o \), \(F_o \), and \(Y_2 \) are the discharge coefficient, thermal expansion coefficient, and vapor expansion coefficient, respectively. These coefficients are calculated according to Miller\(^5\).

The mathematical form of \(v_{exp} \) used in Eq.2 is as proposed by James\(^6\),

\[
 v_{exp} = A (v_{fg}) \left(\frac{X}{100} \right)^B + v_f , \quad \quad (3)
\]

where \(X \) is the steam quality, \(v_{fg} \) is the specific volume of vaporization, and \(v_f \) is the specific volume of saturated liquid. The steam properties, \(v_{fg} \) and \(v_f \), can both be expressed as functions of the steam pressure\(^7\). The values of \(A \) and \(B \) in Eq.3, which differed from those determined by James, are established experimentally for a specified range of steam pressure and flow regime.
Generation 2 - Steam Quality Meter

O-Plate Downstream – Concentric design

Gate Valve Assembly

Cage Nipple Press Recovery Choke

Concentric Orifice Plate

Dimensions:
- 6.125
- 5.00
- 3.375
- 15.50
- 30.75
Flow Regime Map

Generation 2 - Steam Quality Meter

O-Plate Downstream – Concentric design

Steam Inlet

Steam Outlet

Annular/transient Flow Regime

Mist-Phase Flow Regime

Transition Flow Regime

Annular Flow Regime

Flow Regime Map

Generation 2 - Steam Quality Meter

O-Plate Downstream – Concentric design

Steam Inlet

Steam Outlet

Annular/transient Flow Regime

Mist-Phase Flow Regime

Transition Flow Regime

Annular Flow Regime

1-19-2018 DHH
O-Plate Downstream of Choke: 28/64 Choke

Orifice DP Range 125 in-wc (515 - 390 in-wc) in Quality range 45% - 100%
Gen 2 Meters

> Installation
> Operator Maintenance (routine)
> Choke Plugging Remedy (by exception)
Steam Quality Meter Assembly – As provided to Customer
Typical Steam Quality Meter Installation In Well Head Piping

Adjustable Choke

Mainline Valve

3 Valve manifold

To Injector
Recommended Additional Fittings for Maintenance Procedures

2” Tee, Valve, BullPlugs
Normal Steam Flow Conditions

Steam Supply

To Injector
Adjustable Choke - Routine Scale Purge Operations

Step 1: Open Vent Valve
Adjustable Choke - Routine Scale Purge Operations

Step 2

Cycle Adj Choke
Choke Cleanout – By Exception

Step 1

Insert Tool – Clean Choke Bore
Choke Cleanout – By Exception

Step 2

Brief Backflow

Note: This Step May Not Be necessary
Return to Normal Steam Flow Conditions
Steam Quality Meter Downstream of 3 Valve Manifold
Allows Full Range Performance Validation

Adjustable Choke

3 Valve Manifold

Steam Supply

Steam Meter

To Wellhead
Flow Control System Configuration & Logic

1.) Control Metric – MMBTU/D – Modbus Write Register
2.) Fail Open – Loss of Steam Flow
3.) Fail in Last Position - Loss Of Control Signal